MATH 20D Spring 2023 Lecture 25.

Eigenvalues and Constant Coefficient Homogeneous Systems.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.
- Midterm Exams and Solutions.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.
- Midterm Exams and Solutions.
- Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.
- Midterm Exams and Solutions.
- Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
- Homework Sets and Solutions.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.
- Midterm Exams and Solutions.
- Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
- Homework Sets and Solutions.
- Class Zulip.

Announcements

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks $1,2,3,4,5,6,7$, and 8 are assesable on the exam. Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10 pm this Saturday)
- Practice Final Exam with solutions.
- Midterm Exams and Solutions.
- Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
- Homework Sets and Solutions.
- Class Zulip.
- Office hours during finals week next Tuesday from 9am-12pm in HSS 4085.

Outline

(1) Eigenvalues and Eigenvectors

(2) Solving Constant Coefficient Homogeneous Systems

Contents

(1) Eigenvalues and Eigenvectors

2 Solving Constant Coefficient Homogeneous Systems

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$
\mathbb{C}^{2}=\left\{\operatorname{col}\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{C}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{C}^{2} to \mathbb{C}^{2}.

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$
\mathbb{C}^{2}=\left\{\operatorname{col}\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{C}\right\}
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{C}^{2} to \mathbb{C}^{2}.

Definition

A vector $\mathbf{v} \in \mathbb{C}^{2}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$
\mathbb{C}^{2}=\left\{\operatorname{col}\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{C}\right\}
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{C}^{2} to \mathbb{C}^{2}.

Definition

A vector $\mathbf{v} \in \mathbb{C}^{2}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0,0)$.

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$
\mathbb{C}^{2}=\left\{\operatorname{col}\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{C}\right\}
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{C}^{2} to \mathbb{C}^{2}.

Definition

A vector $\mathbf{v} \in \mathbb{C}^{2}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0,0)$.
- There exists a scalar $\lambda \in \mathbb{C}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

Complex Eigenvectors

- Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$
\mathbb{C}^{2}=\left\{\operatorname{col}\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in \mathbb{C}\right\} .
$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A \mathbf{v}$ from \mathbb{C}^{2} to \mathbb{C}^{2}.

Definition

A vector $\mathbf{v} \in \mathbb{C}^{2}$ is an eigenvector of A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0}=\operatorname{col}(0,0)$.
- There exists a scalar $\lambda \in \mathbb{C}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.

Example

The vector $\mathbf{v}=\operatorname{col}(1,0,1)$ is an eigenvector of $A=\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ with eigenvalue $\lambda=3$.

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The following are equivalent.
(a) The determinant $\operatorname{det}(A):=a d-b c$ is non-zero.

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The following are equivalent.
(a) The determinant $\operatorname{det}(A):=a d-b c$ is non-zero.
(b) The matrix A^{-1} exists.

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The following are equivalent.
(a) The determinant $\operatorname{det}(A):=a d-b c$ is non-zero.
(b) The matrix A^{-1} exists.
(c) The matrix equation $A \mathbf{x}=\mathbf{0}$ does not admit a non-zero solution.

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The following are equivalent.
(a) The determinant $\operatorname{det}(A):=a d-b c$ is non-zero.
(b) The matrix A^{-1} exists.
(c) The matrix equation $A \mathbf{x}=\mathbf{0}$ does not admit a non-zero solution.
(d) $\mathbf{v}_{1}=\operatorname{col}(a, c)$ and $\mathbf{v}_{2}=\operatorname{col}(b, d)$ are not scalar multiples of each other.

Inverting 2-by-2 Matrices
The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the unique matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The following are equivalent.
(a) The determinant $\operatorname{det}(A):=a d-b c$ is non-zero.
(b) The matrix A^{-1} exists.
(c) The matrix equation $A \mathbf{x}=\mathbf{0}$ does not admit a non-zero solution.
(d) $\mathbf{v}_{1}=\operatorname{col}(a, c)$ and $\mathbf{v}_{2}=\operatorname{col}(b, d)$ are not scalar multiples of each other.

Finding Eigenvalue

- Write $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for the 2-by-2 identity matrix.
- The equation $A \mathbf{v}=\lambda \mathbf{v}$ may be rearranged to the form

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

This is useful since it allows us to recast definition of eigenvalue as follows

Finding Eigenvalue

- Write $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ for the 2-by-2 identity matrix.
- The equation $A \mathbf{v}=\lambda \mathbf{v}$ may be rearranged to the form

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

This is useful since it allows us to recast definition of eigenvalue as follows

Definition

An eigenvalue of A is a scalar $\lambda \in \mathbb{C}$ such that that equation

$$
(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

admits a non-zero solution $\mathbf{v} \neq 0$.

- In light of the theorem on the previous slide, we see that the eigenvalues of A are exactly the values λ for which $\operatorname{det}(A-\lambda I)=0$.

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices

$$
\text { (a) } \left.\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right) \quad \text { (b) }\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \text {. }
$$

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})
$$

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices

$$
\text { (a) } \left.\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right) \quad \text { (b) }\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \text {. }
$$

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})=2(A-\lambda I) \mathbf{v}
$$

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices

$$
\text { (a) } \left.\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right) \quad \text { (b) }\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \text {. }
$$

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})=2(A-\lambda I) \mathbf{v}=2 \cdot \mathbf{0}
$$

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices
(a) $\left(\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})=2(A-\lambda I) \mathbf{v}=2 \cdot \mathbf{0}=\mathbf{0}
$$

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices
(a) $\left(\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})=2(A-\lambda I) \mathbf{v}=2 \cdot \mathbf{0}=\mathbf{0}
$$

- Hence if \mathbf{v} is an eigenvector of A with eigenvalue λ then $2 \mathbf{v}$ is also an eigenvector of A with eigenvalue λ.

Examples of Eigenvalues

Example

Determine the eigenvalues of the following matrices
(a) $\left(\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A-\lambda I) \mathbf{v}=\mathbf{0}$ then for example

$$
(A-\lambda I)(2 \mathbf{v})=2(A-\lambda I) \mathbf{v}=2 \cdot \mathbf{0}=\mathbf{0}
$$

- Hence if \mathbf{v} is an eigenvector of A with eigenvalue λ then $2 \mathbf{v}$ is also an eigenvector of A with eigenvalue λ. We could even replace 2 with any non-zero scalar and the same statement would hold.

Finding Eigenvectors

- If \mathbf{v} is an eigenvector for A with eigenvalue λ and s is a non-zero scalar then $s \mathbf{v}$ is another eigenvector for A with eigenvalue λ.
- Since they only differ by multiplication by a constant, we'd like to consider \mathbf{v} and $s \cdot \mathbf{v}$ as more or less the "same" eigenvector of A.

Definition

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{C}^{2}$. We say that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent if there does not exists a scalar $s \in \mathbb{C}$ such that

$$
\mathbf{v}_{1}=s \cdot \mathbf{v}_{2}
$$

Example

For each of the matrix below, find two linearly independent eigenvectors.

$$
A=\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right)
$$

Contents

(1) Eigenvalues and Eigenvectors

(2) Solving Constant Coefficient Homogeneous Systems

Constant Coefficient Homogeneous Systems

- Let A be a 2-by-2 matrix with constant entries and consider a system of differential equations in normal form

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

- As was the case for scalar equations, we are interested in constructing a general solution to (1) from which we will derive solutions to IVP's.

Theorem

Suppose A has two linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. Let r_{1} and r_{2} denote the eigenvalues of \mathbf{v}_{1} and \mathbf{v}_{2} respectively.

Constant Coefficient Homogeneous Systems

- Let A be a 2-by-2 matrix with constant entries and consider a system of differential equations in normal form

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

- As was the case for scalar equations, we are interested in constructing a general solution to (1) from which we will derive solutions to IVP's.

Theorem

Suppose A has two linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. Let r_{1} and r_{2} denote the eigenvalues of \mathbf{v}_{1} and \mathbf{v}_{2} respectively. Then a general solution to equation (1) is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)
$$

where $\mathbf{x}_{1}(t)=e^{r_{1} t} \mathbf{v}_{1}$ and $\mathbf{x}_{2}(t)=e^{r_{2} t} \mathbf{v}_{2}$.

A First Example

Example

Write down a general solution to the equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right) \mathbf{x}(t)
$$

