MATH 20D Spring 2023 Lecture 25.

Eigenvalues and Constant Coefficient Homogeneous Systems.

 CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.
 - Midterm Exams and Solutions.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.
 - Midterm Exams and Solutions.
 - Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.
 - Midterm Exams and Solutions.
 - Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
 - Homework Sets and Solutions.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.
 - Midterm Exams and Solutions.
 - Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
 - Homework Sets and Solutions.
 - Class Zulip.

- CAPE course and professor evaluations are available. Please fill this out BEFORE 8am on June 10th.
- Your final exam takes place in WLH 2005 Wednesday June 14th 3:00pm-6:00pm.
- The final exam is cumulative for the entire quarter. Only question types appearing in homeworks 1,2,3,4,5,6,7, and 8 are assesable on the exam.
 Students are permitted the use of a scientific calculator and a double sided page of handwritten notes.
- Study resources: (all will be available by 10pm this Saturday)
 - Practice Final Exam with solutions.
 - Midterm Exams and Solutions.
 - Suggested Textbook Questions (focusing on the question types which will comprise your final exam.)
 - Homework Sets and Solutions.
 - Class Zulip.
- Office hours during finals week next Tuesday from 9am-12pm in HSS 4085.

Outline

Eigenvalues and Eigenvectors

Solving Constant Coefficient Homogeneous Systems

Contents

Eigenvalues and Eigenvectors

Solving Constant Coefficient Homogeneous Systems

• Suppose $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a,b,c,d\in\mathbb{R}$.

- Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$\mathbb{C}^2 = \{ \operatorname{col}(x_1, x_2) \colon x_1, x_2 \in \mathbb{C} \}.$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A\mathbf{v}$ from \mathbb{C}^2 to \mathbb{C}^2 .

- Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$\mathbb{C}^2 = \{ \operatorname{col}(x_1, x_2) \colon x_1, x_2 \in \mathbb{C} \}.$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A\mathbf{v}$ from \mathbb{C}^2 to \mathbb{C}^2 .

Definition

A vector $\mathbf{v} \in \mathbb{C}^2$ is an **eigenvector of** A if \mathbf{v} satisfies the following two conditions:

- Suppose $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a,b,c,d\in\mathbb{R}$.
- Write

$$\mathbb{C}^2 = \{ \operatorname{col}(x_1, x_2) \colon x_1, x_2 \in \mathbb{C} \}.$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A\mathbf{v}$ from \mathbb{C}^2 to \mathbb{C}^2 .

Definition

A vector $\mathbf{v} \in \mathbb{C}^2$ is an **eigenvector of** A if \mathbf{v} satisfies the following two conditions:

• The vector \mathbf{v} is not equal to the vector $\mathbf{0} = \operatorname{col}(0,0)$.

- Suppose $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a,b,c,d\in\mathbb{R}$.
- Write

$$\mathbb{C}^2 = \{ \operatorname{col}(x_1, x_2) \colon x_1, x_2 \in \mathbb{C} \}.$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A\mathbf{v}$ from \mathbb{C}^2 to \mathbb{C}^2 .

Definition

A vector $\mathbf{v} \in \mathbb{C}^2$ is an **eigenvector of** A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0} = \operatorname{col}(0,0)$.
- There exists a scalar $\lambda \in \mathbb{C}$ such that $A\mathbf{v} = \lambda \mathbf{v}$.

- Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2-by-2 matrix with entries $a, b, c, d \in \mathbb{R}$.
- Write

$$\mathbb{C}^2 = \{ \operatorname{col}(x_1, x_2) \colon x_1, x_2 \in \mathbb{C} \}.$$

so that multiplication by A gives a function $\mathbf{v} \mapsto A\mathbf{v}$ from \mathbb{C}^2 to \mathbb{C}^2 .

Definition

A vector $\mathbf{v} \in \mathbb{C}^2$ is an **eigenvector of** A if \mathbf{v} satisfies the following two conditions:

- The vector \mathbf{v} is not equal to the vector $\mathbf{0} = \operatorname{col}(0,0)$.
- There exists a scalar $\lambda \in \mathbb{C}$ such that $A\mathbf{v} = \lambda \mathbf{v}$.

Example

The vector $\mathbf{v} = \operatorname{col}(1,0,1)$ is an eigenvector of $A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ with eigenvalue $\lambda = 3$.

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Theorem

Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. The following are equivalent.

(a) The **determinant** det(A) := ad - bc is non-zero.

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Theorem

- (a) The **determinant** det(A) := ad bc is non-zero.
- (b) The matrix A^{-1} exists.

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Theorem

- (a) The **determinant** det(A) := ad bc is non-zero.
- (b) The matrix A^{-1} exists.
- (c) The matrix equation $A\mathbf{x} = \mathbf{0}$ does not admit a non-zero solution.

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Theorem

- (a) The **determinant** det(A) := ad bc is non-zero.
- (b) The matrix A^{-1} exists.
- (c) The matrix equation $A\mathbf{x} = \mathbf{0}$ does not admit a non-zero solution.
- (d) $\mathbf{v}_1 = \operatorname{col}(a, c)$ and $\mathbf{v}_2 = \operatorname{col}(b, d)$ are not scalar multiples of each other.

The method for finding eigenvalues uses one big idea from linear algebra

Definition

If it exists **the inverse of** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the unique matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Theorem

- (a) The **determinant** det(A) := ad bc is non-zero.
- (b) The matrix A^{-1} exists.
- (c) The matrix equation $A\mathbf{x} = \mathbf{0}$ does not admit a non-zero solution.
- (d) $\mathbf{v}_1 = \operatorname{col}(a, c)$ and $\mathbf{v}_2 = \operatorname{col}(b, d)$ are not scalar multiples of each other.

Finding Eigenvalue

- Write $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for the 2-by-2 identity matrix.
- The equation $A\mathbf{v} = \lambda \mathbf{v}$ may be rearranged to the form

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

This is useful since it allows us to recast definition of eigenvalue as follows

Finding Eigenvalue

- Write $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ for the 2-by-2 identity matrix.
- The equation $A\mathbf{v} = \lambda \mathbf{v}$ may be rearranged to the form

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

This is useful since it allows us to recast definition of eigenvalue as follows

Definition

An eigenvalue of A is a scalar $\lambda \in \mathbb{C}$ such that that equation

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

admits a non-zero solution $\mathbf{v} \neq \mathbf{0}$.

• In light of the theorem on the previous slide, we see that the eigenvalues of A are exactly the values λ for which $\det(A - \lambda I) = 0$.

Example

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

(b)
$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A - \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A - \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v})$$

Example

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v}) = 2(A - \lambda I)\mathbf{v}$$

Example

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v}) = 2(A - \lambda I)\mathbf{v} = 2 \cdot \mathbf{0}$$

Example

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v}) = 2(A - \lambda I)\mathbf{v} = 2 \cdot \mathbf{0} = \mathbf{0}$$

Example

Determine the eigenvalues of the following matrices

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v}) = 2(A - \lambda I)\mathbf{v} = 2 \cdot \mathbf{0} = \mathbf{0}$$

• Hence if \mathbf{v} is an eigenvector of A with eigenvalue λ then $2\mathbf{v}$ is also an eigenvector of A with eigenvalue λ .

Example

Determine the eigenvalues of the following matrices

(a)
$$\begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

- Given an eigenvalue λ of a matrix A, we can determine the corresponding eigenvectors by solving the equation $(A \lambda I)\mathbf{v} = \mathbf{0}$.
- We can always "pull scalars through matrix multiplication" so if $(A \lambda I)\mathbf{v} = \mathbf{0}$ then for example

$$(A - \lambda I)(2\mathbf{v}) = 2(A - \lambda I)\mathbf{v} = 2 \cdot \mathbf{0} = \mathbf{0}$$

• Hence if \mathbf{v} is an eigenvector of A with eigenvalue λ then $2\mathbf{v}$ is also an eigenvector of A with eigenvalue λ . We could even replace 2 with any **non-zero scalar** and the same statement would hold.

Finding Eigenvectors

- If \mathbf{v} is an eigenvector for A with eigenvalue λ and s is a **non-zero** scalar then $s\mathbf{v}$ is another eigenvector for A with eigenvalue λ .
- Since they only differ by multiplication by a constant, we'd like to consider v and s · v as more or less the "same" eigenvector of A.

Definition

Suppose $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{C}^2$. We say that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent if there does not exists a scalar $s \in \mathbb{C}$ such that

$$\mathbf{v}_1 = s \cdot \mathbf{v}_2.$$

Example

For each of the matrix below, find two linearly independent eigenvectors.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}.$$

Contents

Eigenvalues and Eigenvectors

Solving Constant Coefficient Homogeneous Systems

Constant Coefficient Homogeneous Systems

 Let A be a 2-by-2 matrix with constant entries and consider a system of differential equations in normal form

$$\mathbf{x}'(t) = A\mathbf{x}(t) \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t)).$

 As was the case for scalar equations, we are interested in constructing a general solution to (1) from which we will derive solutions to IVP's.

Theorem

Suppose *A* has two linearly independent eigenvectors \mathbf{v}_1 and \mathbf{v}_2 . Let r_1 and r_2 denote the eigenvalues of \mathbf{v}_1 and \mathbf{v}_2 respectively.

Constant Coefficient Homogeneous Systems

 Let A be a 2-by-2 matrix with constant entries and consider a system of differential equations in normal form

$$\mathbf{x}'(t) = A\mathbf{x}(t) \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t)).$

 As was the case for scalar equations, we are interested in constructing a general solution to (1) from which we will derive solutions to IVP's.

Theorem

Suppose A has two linearly independent eigenvectors \mathbf{v}_1 and \mathbf{v}_2 . Let r_1 and r_2 denote the eigenvalues of \mathbf{v}_1 and \mathbf{v}_2 respectively. Then a general solution to equation (1) is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t)$$

where $\mathbf{x}_{1}(t) = e^{r_{1}t}\mathbf{v}_{1}$ and $\mathbf{x}_{2}(t) = e^{r_{2}t}\mathbf{v}_{2}$.

A First Example

Example

Write down a general solution to the equation

$$\mathbf{x}'(t) = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \mathbf{x}(t)$$